Agent
Attributes
attributeid= uuid4()attributespecs_dir= specs_dirattributename= nameattributellm= llmattributestart_node= start_nodeattributeregistry= registry or Registry()attributestate_storage= state_storage or InMemoryStateStorage()attributeiteration_count= 0attributemax_iterations= max_iterationsattributelogger= logging.LoggerAdapter(logger, {'agent_id': str(self.id), 'agent_name': self.name})Functions
func__init____init__(self, /, specs_dir, start_node, *, name='Agent', llm, registry=None, state_storage=None, max_iterations=50)paramselfparamspecs_dirstrparamstart_nodestrparamnamestr= 'Agent'paramllmBaseChatModelparamregistryRegistry | None= Noneparamstate_storageStateStorage | None= Noneparammax_iterationsint= 50Returns
Nonefuncstepstep(self, /, input_, context=None) -> ExecutorOutputparamselfparaminput_str | ExecutorInputparamcontextdict[str, Any] | None= NoneReturns
ExecutorOutputfunc_process_input_loop_process_input_loop(self) -> NoneparamselfReturns
Nonefunc_on_exit_input_loop_on_exit_input_loop(self, /, task) -> NoneparamselfparamtaskTask[None]Returns
Nonefunc_get_node_actor_cfg_get_node_actor_cfg(self, /, output) -> NodeAgentConfigparamselfparamoutputExecutorOutputReturns
NodeAgentConfigfunc_create_initial_node_actor_create_initial_node_actor(self, /, input_, execution_id) -> NodeActor[Any]paramselfparaminput_ExecutorInputparamexecution_idUUIDReturns
NodeActor[Any]func_create_executor_create_executor(self, /, input_) -> Executorparamselfparaminput_str | ExecutorInputReturns
Executorfunc_create_executor_input_create_executor_input(self, /, input_, context=None) -> ExecutorInputparamselfparaminput_strparamcontextdict[str, Any] | None= NoneReturns
ExecutorInputLast updated on